数学
为什么在数学里要讲一一对应
我们讲求“一一对应”是数学上运用的最基本的关系。数字的来源相当早,有人类的出现,就有了数的使用。但是由于原始人类应用知识是极少的,且落后的,他们起初只知道“1”与“2”等数,后来,随着工具的大为改进,原始人捕获的猎物多得无法计清,他们为了计数,后来他们用结绳计数的方法来表示今天有多少猎物,这就是“一一对应”的雏形。 ......
为什么用一副三角板能画出24个角
每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......
为什么有无限大与无限小
人们通常碰到的数,不管是实数或是复数,都有确定的量值,就说是有限的。这充分反映了我们一般碰到的事物都是有限的,总能用这些数来计量。 我们在长期的不断认识过程中,又开始产生两个新的概念。最早,人们把整个宇宙说成只是地球,但航海学的测量却又测得地球半径大约为6370公里,它对人们来说,是一个十分大的数。16世纪,哥白尼的......
为什么π值是永不循环的
有一个关于圆周率的歌谣,盛行于古代:“山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐而乐。” 圆周率是圆的周长与直径之比,表示的是一个常数,符号是希腊字母 π。人们为了计算圆周率,公元前便开始对它进行计算。魏晋时期刘徽曾于公元263年用割圆术的方法求到3.14,这被称为“徽率”。 在公元460年,祖......
为什么一个人能解决狼、羊、白菜过河的问题
题目是这样的:有位带着一只狼、一只羊、一棵白菜来到河边(我们假使狼是不吃人)的人。河边刚好有一条空着的小船,过河时,船很小仅能允许主人带一样东西,若带两样东西上船,船便会沉下去。另一方面,若没人照管,狼会吃掉羊,羊又将啃白菜,因此,狼和羊,羊和白菜在主人不在的情况下,是不可以放在一块的。问主人应该采取什么样的过河方案,才可以把......
为什么有数学黑洞“西西费斯串”
传说在古希腊神话中,科林斯国王西西费斯被罚将一块巨石一直推到一座山上,但是不管他如何努力,这块巨石总是在到达山顶之前就滚下来,于是他只好再推,并且永无休止。世界著名的西西费斯串就是依据这个故事一举得名的。 什么叫西西费斯串呢?它是随便一个数,如35962,数出这个数中的偶数个数以及奇数个数、及全部数字的个数,就能得到......
为什么卡拉OK比赛算分时要去掉最高分和最低分
在卡拉OK比赛中,评委们所亮出的分数,按评分规则都是要去掉一个最高分与一个最低分,之后取到的分数的平均值来作为参赛者的最后得分。不知道你想过没有,为何要去掉最高分与最低分呢? 例如一个同学唱完之后,六个评委中的评分是9.00、9.50、9.55、9.60、9.75、9.90(10分为满分)。再去掉最高分9.90与最低......
为什么有鸡兔同笼问题
鸡兔一笼问题是在我国古代算书《孙子算经》里的一个著名的数学问题。它的内容为: 在同一只笼子里,关着鸡与兔子。数一下,总有头35只,脚94只。请问:笼里有多少只鸡?多少只兔子? 利用现在列方程来解应用题的方法,求解这个问题十分容易。设里面鸡有x只,兔子有y只,那么由题意,有: x+y=35 ......
为什么有哥德巴赫猜想
无论检验多大的数都可以发现,大于4的偶数一定可以写成两个奇素数之和,而大于7的奇数部可以写成三个奇数素数之和。 6=3+3,8=5+3 10=5+5,… 100=97+3,102=97+5… 9=3+3+3,11=5+3+3… 99=89+7+3,101=89+7+5,… ......
为什么没有最小公约数和最大公倍数
在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......