数学
为什么游泳圈也叫救生圈
只要游过泳的人便都有过使用游泳圈的记忆,若你套上五彩缤纷的游泳圈在水里游泳、嬉戏的时候,你是否想到过,游泳圈的浮力有多大呢,为何它能把一个人托在水面上呢?那么游泳圈的浮力是如何计算的呢?用数学知识我们应该知道,若把游泳圈充满气之后的体积,乘以水的密度,然后再减去游泳圈自身重量,得到的结果便是游泳圈所有的浮力。 水的密......
为什么1+1可以等于1
我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......
为什么一个人能解决狼、羊、白菜过河的问题
题目是这样的:有位带着一只狼、一只羊、一棵白菜来到河边(我们假使狼是不吃人)的人。河边刚好有一条空着的小船,过河时,船很小仅能允许主人带一样东西,若带两样东西上船,船便会沉下去。另一方面,若没人照管,狼会吃掉羊,羊又将啃白菜,因此,狼和羊,羊和白菜在主人不在的情况下,是不可以放在一块的。问主人应该采取什么样的过河方案,才可以把......
为什么有数学黑洞“西西费斯串”
传说在古希腊神话中,科林斯国王西西费斯被罚将一块巨石一直推到一座山上,但是不管他如何努力,这块巨石总是在到达山顶之前就滚下来,于是他只好再推,并且永无休止。世界著名的西西费斯串就是依据这个故事一举得名的。 什么叫西西费斯串呢?它是随便一个数,如35962,数出这个数中的偶数个数以及奇数个数、及全部数字的个数,就能得到......
为什么铁拉闸一推就会收拢
居住在城市里的小朋友,在上学或者回家时,假如沿马路留心观察一下,你一定可以发现,有些商店或建筑物的铁拉闸,尽管很重,但是开关起来却十分轻便。 为什么一扇巨大的铁拉闸,只要一推,它就被合拢了,但是拉伸开来,却又是那样地牢固呢? 假如你仔细地观察这些铁拉闸的个别构造,那就可以找到正确的回答。因为它们是由一个个的......
为什么有无限大与无限小
人们通常碰到的数,不管是实数或是复数,都有确定的量值,就说是有限的。这充分反映了我们一般碰到的事物都是有限的,总能用这些数来计量。 我们在长期的不断认识过程中,又开始产生两个新的概念。最早,人们把整个宇宙说成只是地球,但航海学的测量却又测得地球半径大约为6370公里,它对人们来说,是一个十分大的数。16世纪,哥白尼的......
为什么在数学里要讲一一对应
我们讲求“一一对应”是数学上运用的最基本的关系。数字的来源相当早,有人类的出现,就有了数的使用。但是由于原始人类应用知识是极少的,且落后的,他们起初只知道“1”与“2”等数,后来,随着工具的大为改进,原始人捕获的猎物多得无法计清,他们为了计数,后来他们用结绳计数的方法来表示今天有多少猎物,这就是“一一对应”的雏形。 ......
为什么不渡河能知河面的宽度
不过河却要测量一条河的宽度,对一个懂得几何学的人来讲,与不爬到树梢上去却测量树的高度同样简单,我们能使用与测量不可以接近的高度的一样方法来测量不可以接近的距离。这二种测量方法都是用别的一个利于直接量出来的距离来代替我们所要测量出的距离。下面来介绍一种十分简单的用“三针仪”测量河面宽度的方法。 什么称“三针仪”呢?便是......
为什么用一副三角板能画出24个角
每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......
为什么说动物中也有数学家
你晓得吗?在自然界中,有很多奇妙的动物“数学家”。在黄金矩形(宽长之比为0.618的矩形)里靠着三边做成一个正方形,剩下的那部分则又是一个黄金矩形,可以依次再做成正方形。将这些正方形中心都按顺序联结,可得到一条“黄金螺线”。而海洋学家发现,在鹦鹉螺的身上,在一些动物角质体上,或有甲壳的软件动物身上,都曾发现有“黄金螺线”。 ......