数学

为什么会有“+-×÷=”这些符号

+、-、×、÷以及=这五个符号,小学生,还有些学前幼儿也已懂得它们的意义以及用法,在高等数学里当然少不了它们。但是它们的来历确实经过了一段十分曲折的发展道路。 古希腊与印度人不约而同,都把两个数字写在一起,表示加法,如3+1/4就写成了3 1/4。直到现在,从带分数的写法中还可能看到这种方法的遗迹。 若要......

继续阅读

为什么不渡河能知河面的宽度

不过河却要测量一条河的宽度,对一个懂得几何学的人来讲,与不爬到树梢上去却测量树的高度同样简单,我们能使用与测量不可以接近的高度的一样方法来测量不可以接近的距离。这二种测量方法都是用别的一个利于直接量出来的距离来代替我们所要测量出的距离。下面来介绍一种十分简单的用“三针仪”测量河面宽度的方法。 什么称“三针仪”呢?便是......

继续阅读

为什么画圆圈能帮助你快速解题

你对圆圈并不陌生吧,可你知道用圆圈可以帮助我们迅速解题吗?我们先看下面这道例子:棋类比赛之前,班长便统计会下象棋与围棋的人数。统计会下象棋的人数时便有14个人举手,统计会下围棋的人数时便有11个人举手。再后来班长发现,会下象棋与围棋的人数总共有19人。按照原来的统计应该有14+11=25人,怎么会少了6个人呢?这是由于有的同学......

继续阅读

为什么说0的意义不是没有

上学以后我们最先学习的是算术课,便认识了0这一数字,它可能是你所学过的最小的数字了。那么0是什么含义呢?若用手指数铅笔盒内铅笔的数目,1代表一支铅笔,则0便表示无铅笔,0的意思便是没有,若你学过减法,而10减10等于0,意思是说减没了,好象10个苹果让人吃掉了,最后一个不剩。看来0确实表示没有。 平常0是表示没有,可......

继续阅读

为什么1+1可以等于1

我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......

继续阅读

为什么有鸡兔同笼问题

鸡兔一笼问题是在我国古代算书《孙子算经》里的一个著名的数学问题。它的内容为: 在同一只笼子里,关着鸡与兔子。数一下,总有头35只,脚94只。请问:笼里有多少只鸡?多少只兔子? 利用现在列方程来解应用题的方法,求解这个问题十分容易。设里面鸡有x只,兔子有y只,那么由题意,有: x+y=35 ......

继续阅读

为什么用一根绳子能算出大树的直径

圆周率π是由中国古代伟大的数学家祖冲之最先计算出来的,要比西洋人早了达1000多年。有了圆周率,我们都知道它是圆的周长和直径的比值,就能借助π来求出周长或者半径的值了。可是在我国古代,π还未诞生的时候,人们是如何测量大树、池塘的直径的呢? 实际上,在更早的时候,勤奋智能的劳动人民便已经了解“径一周三”的道理来了。上句......

继续阅读

为什么三角形内角之和总等于180度

平面几何告诉我们,“三角形的内角之和等于180度”。因为这是一条已经证明了的定理,所以对于“三角形内角之和会不会不等于180度”这样一个“怪”问题,很少会有人去设想了。 其实,它真的是个问题。早在100多年前,或是更早的时候,已有人开始设想,不但设想研究了这个问题,并且还得出证明了如下两个完全相反的结论: ......

继续阅读

为什么铁拉闸一推就会收拢

居住在城市里的小朋友,在上学或者回家时,假如沿马路留心观察一下,你一定可以发现,有些商店或建筑物的铁拉闸,尽管很重,但是开关起来却十分轻便。 为什么一扇巨大的铁拉闸,只要一推,它就被合拢了,但是拉伸开来,却又是那样地牢固呢? 假如你仔细地观察这些铁拉闸的个别构造,那就可以找到正确的回答。因为它们是由一个个的......

继续阅读

为什么有无限大与无限小

人们通常碰到的数,不管是实数或是复数,都有确定的量值,就说是有限的。这充分反映了我们一般碰到的事物都是有限的,总能用这些数来计量。 我们在长期的不断认识过程中,又开始产生两个新的概念。最早,人们把整个宇宙说成只是地球,但航海学的测量却又测得地球半径大约为6370公里,它对人们来说,是一个十分大的数。16世纪,哥白尼的......

继续阅读