数学
为什么画圆圈能帮助你快速解题
你对圆圈并不陌生吧,可你知道用圆圈可以帮助我们迅速解题吗?我们先看下面这道例子:棋类比赛之前,班长便统计会下象棋与围棋的人数。统计会下象棋的人数时便有14个人举手,统计会下围棋的人数时便有11个人举手。再后来班长发现,会下象棋与围棋的人数总共有19人。按照原来的统计应该有14+11=25人,怎么会少了6个人呢?这是由于有的同学......
为什么有近似值
有的时候可能有人将问你:“你们年级有多少位同学呀?”你并不知道确切的数字,可你知道你班上有35位同学,共有4个班,因此你会说:“大概140名吧!”这时你所给出的数字便是近似值,由于你不知到底有多少位同学,所以就用近似值取代了准确值;并且你的分析也十分正确,年级中总共有143位同学,你所给出的近似值与准确值是十分接近的。近似值是......
为什么汽油桶、热水瓶是圆柱形的
汽油桶、热水瓶等,都是用来装液体的容器。不知平时你注意过没有,装液体的容器,大都是圆柱形的。这是否有数学方面的道理呢?有的。 我们生产一件容器,都希望可以用最省的材料,来装一定体积的液体。或者说,用同样的材料,做成的容器的容积最大。 在平面几何里,我们学过计算圆面积以及一些正多边形的面积或周长的方法。例如:......
为什么用一根绳子能算出大树的直径
圆周率π是由中国古代伟大的数学家祖冲之最先计算出来的,要比西洋人早了达1000多年。有了圆周率,我们都知道它是圆的周长和直径的比值,就能借助π来求出周长或者半径的值了。可是在我国古代,π还未诞生的时候,人们是如何测量大树、池塘的直径的呢? 实际上,在更早的时候,勤奋智能的劳动人民便已经了解“径一周三”的道理来了。上句......
为什么在数学里要讲一一对应
我们讲求“一一对应”是数学上运用的最基本的关系。数字的来源相当早,有人类的出现,就有了数的使用。但是由于原始人类应用知识是极少的,且落后的,他们起初只知道“1”与“2”等数,后来,随着工具的大为改进,原始人捕获的猎物多得无法计清,他们为了计数,后来他们用结绳计数的方法来表示今天有多少猎物,这就是“一一对应”的雏形。 ......
为什么会有“+-×÷=”这些符号
+、-、×、÷以及=这五个符号,小学生,还有些学前幼儿也已懂得它们的意义以及用法,在高等数学里当然少不了它们。但是它们的来历确实经过了一段十分曲折的发展道路。 古希腊与印度人不约而同,都把两个数字写在一起,表示加法,如3+1/4就写成了3 1/4。直到现在,从带分数的写法中还可能看到这种方法的遗迹。 若要......
为什么《周髀算经》是中国最早的数学书
中国是世界上文明古国之一,数学知识也是源远流长,可是中国古代数学启蒙在何时,至今还无法确定,我们只能由考古学的发现与有关文物、文献作出大概的推测。 大约在公元前5000多年前的浙江河姆渡遗址有力表明,中国在当时的农业生产已经有了相当大的规模,和农业生产有关的土地丈量、房屋建筑、仓储结构甚至天文计算都是离不开数学的。 ......
为什么游泳圈也叫救生圈
只要游过泳的人便都有过使用游泳圈的记忆,若你套上五彩缤纷的游泳圈在水里游泳、嬉戏的时候,你是否想到过,游泳圈的浮力有多大呢,为何它能把一个人托在水面上呢?那么游泳圈的浮力是如何计算的呢?用数学知识我们应该知道,若把游泳圈充满气之后的体积,乘以水的密度,然后再减去游泳圈自身重量,得到的结果便是游泳圈所有的浮力。 水的密......
为什么球面不能展成平面图形
现在学过数学的人们都知道这样一个原理:圆柱、圆锥、圆台的侧面面积,我们可以利用各图形在平面内的展开图面来求出面积。但是球面是不能展成一个平面图形,因此球的表面积公式也就没办法用这个方法求出。但是为什么球面不能展成一个平面图形呢? 我们可以把圆柱、圆锥、圆台的一个侧面看成由一条直线(或线段)运动生成的图形,于是只有球面......
为什么没有最小公约数和最大公倍数
在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......