数学

为什么没有最小公约数和最大公倍数

在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......

继续阅读

为什么要“先乘除,后加减”

为了防止四则混合运算时相互发生混淆,使计算得到一个已经确定的结果。人们先后结合生活和实际生产的各个需要,在四则混合运算中明确规定:要“先乘除,后加减”。为什么科学家会如此规定呢?因为这样规定是有一定道理的。它的理由如下: 1.这样规定运算顺序,更加符合生活实际需要。请看下面例子。例1:王大妈到布店买了3米红布,每米红......

继续阅读

为什么有哥德巴赫猜想

无论检验多大的数都可以发现,大于4的偶数一定可以写成两个奇素数之和,而大于7的奇数部可以写成三个奇数素数之和。 6=3+3,8=5+3 10=5+5,… 100=97+3,102=97+5… 9=3+3+3,11=5+3+3… 99=89+7+3,101=89+7+5,… ......

继续阅读

为什么会有“+-×÷=”这些符号

+、-、×、÷以及=这五个符号,小学生,还有些学前幼儿也已懂得它们的意义以及用法,在高等数学里当然少不了它们。但是它们的来历确实经过了一段十分曲折的发展道路。 古希腊与印度人不约而同,都把两个数字写在一起,表示加法,如3+1/4就写成了3 1/4。直到现在,从带分数的写法中还可能看到这种方法的遗迹。 若要......

继续阅读

为什么有时我们只求近似值

假如有人问你:“今年几岁了?”你会回答:“我15岁了。”这个回答是正确的,但15只是你年龄的近似值,它并不十分精确。如果你的朋友也是15岁,要比较你们两个年龄的大小,就必须知道你们生在哪一月,也就是,你必须说出自己的年龄是14岁零几个月才好比较。但它依然是个近似值。如果你们两人同时生在10月份,那么,必须更准确地知道你们的生日......

继续阅读

为什么能快速画出五角星

我们介绍三种用直尺与圆规很快画出五角星的近似方法。像这样,你以后在彩纸上再画五角星的时候,可以方便多了。 方法一:口诀“城外道儿弯,城门五面开”,首先在纸上用圆规画个圆,然后画出圆的两条相互垂直的直径AC与BD;之后分别用C、D作圆心,用直径BD的半径作弧,两弧交在E点。则OE便近似等于圆的内接正五边形之边长。自A点......

继续阅读

为什么1+1可以等于1

我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......

继续阅读

为什么会有七巧板

七巧板也叫“益智图”,依据近代数学史专家详细研究,七巧板发明的年代大约为明、清时期,它是我国劳动人民智能的结晶,在国外也十分重视。欧美人称它为“唐图”,其实这是一种误解,事实上“tangram”这个英文单词正确译法应是“蛋图”。从前我国东南沿海的水上居民被称做蛋家,因而在明清两朝,备受封建统治者的压迫以及歧视,七巧板就是他们的......

继续阅读

为什么游泳圈也叫救生圈

只要游过泳的人便都有过使用游泳圈的记忆,若你套上五彩缤纷的游泳圈在水里游泳、嬉戏的时候,你是否想到过,游泳圈的浮力有多大呢,为何它能把一个人托在水面上呢?那么游泳圈的浮力是如何计算的呢?用数学知识我们应该知道,若把游泳圈充满气之后的体积,乘以水的密度,然后再减去游泳圈自身重量,得到的结果便是游泳圈所有的浮力。 水的密......

继续阅读

为什么用一副三角板能画出24个角

每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......

继续阅读