数学

为什么照相机用三角架而不用四角架

你肯定见过照相机所专用的三角架,它伸出来三条长长的腿,稳稳地托住了上面的照相机,使拍出来的照片将不会因为拍摄者手的轻微移动而变模糊。除了照相机的三角架外,拍电影所用的摄像机也都有一个三脚架,往往脚上还有副轮子,以方便摄像机的移动。 在我们生活中有四只脚的东西也很多,像桌子、椅子和各种鞋架子、超市里的货物架等等,不是都......

继续阅读

为什么汽油桶、热水瓶是圆柱形的

汽油桶、热水瓶等,都是用来装液体的容器。不知平时你注意过没有,装液体的容器,大都是圆柱形的。这是否有数学方面的道理呢?有的。 我们生产一件容器,都希望可以用最省的材料,来装一定体积的液体。或者说,用同样的材料,做成的容器的容积最大。 在平面几何里,我们学过计算圆面积以及一些正多边形的面积或周长的方法。例如:......

继续阅读

为什么能快速画出五角星

我们介绍三种用直尺与圆规很快画出五角星的近似方法。像这样,你以后在彩纸上再画五角星的时候,可以方便多了。 方法一:口诀“城外道儿弯,城门五面开”,首先在纸上用圆规画个圆,然后画出圆的两条相互垂直的直径AC与BD;之后分别用C、D作圆心,用直径BD的半径作弧,两弧交在E点。则OE便近似等于圆的内接正五边形之边长。自A点......

继续阅读

为什么有数学黑洞“西西费斯串”

传说在古希腊神话中,科林斯国王西西费斯被罚将一块巨石一直推到一座山上,但是不管他如何努力,这块巨石总是在到达山顶之前就滚下来,于是他只好再推,并且永无休止。世界著名的西西费斯串就是依据这个故事一举得名的。 什么叫西西费斯串呢?它是随便一个数,如35962,数出这个数中的偶数个数以及奇数个数、及全部数字的个数,就能得到......

继续阅读

为什么三角形内角之和总等于180度

平面几何告诉我们,“三角形的内角之和等于180度”。因为这是一条已经证明了的定理,所以对于“三角形内角之和会不会不等于180度”这样一个“怪”问题,很少会有人去设想了。 其实,它真的是个问题。早在100多年前,或是更早的时候,已有人开始设想,不但设想研究了这个问题,并且还得出证明了如下两个完全相反的结论: ......

继续阅读

为什么蜂窝都是六角形的

若你仔细地观察过蜜蜂的蜂房,你便会由衷地发出惊叹来,它的结构可真是大自然中的奇迹啊。 自正面看上去,蜂房的蜂窝全是由很多大小一样的六角形组成的,并且排列得十分整齐;自侧面看,蜂房由很多六棱柱紧密地排列在一起而构成的;若你再认真地观察这些六棱柱的底面,你会更加惊讶,它们已不再是六角形的,它不是平的,也不是圆的,却是尖的......

继续阅读

为什么1+1可以等于1

我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......

继续阅读

为什么在罗马数字中没有“0”

世界上每一个国家的文字都是不相同的,可是它们却有一种相同的文字,不需要经过翻译,每个人都会看得懂,这就是阿拉伯数字。0、1、2……9等,这样写起来既简单方便,又容易看懂,所以各个国家先后都采用它来计数。“0”是一个奇特的阿拉伯数字,它是在1、2、3、4、5、6、7、8、9、0这10个数字中诞生得最晚的一个。世界上各国早期使用过......

继续阅读

为什么九条路不能相交是错误的

在世界各个地方,都极为广泛流传着这样一道数学名题,虽然说法各不相同,但实际上却是同一个问题:一个地方有三个村庄及三所学校,从一个村庄到三所学校各自修一条路,能否使这九条路不相互交叉呢?许多人认为,只要你不怕艰难多绕绕弯子,这件事是很容易办到的。但事实并非如此,上面这些想法是不可能实现的,其中有着奇妙的数学原理。 在1......

继续阅读

为什么偶数与整数同样多

当看到这则题目,你可能会不假思索地说:当然是整数比偶数多,部分怎么会比全体多呢!偶数是指能被2所整除的整数,它仅是整数集合中的一部分,另外除了偶数之外,整数还包括奇数。照这样看上去,偶数的确应该没有整数多。 但这个问题在实质上问的是偶数集合与整数集合之间的大小关系。集合在数学上所指的是一类事物的总称,若把所有的整数放......

继续阅读