数学
为什么1+1可以等于1
我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......
为什么三角形内角之和总等于180度
平面几何告诉我们,“三角形的内角之和等于180度”。因为这是一条已经证明了的定理,所以对于“三角形内角之和会不会不等于180度”这样一个“怪”问题,很少会有人去设想了。 其实,它真的是个问题。早在100多年前,或是更早的时候,已有人开始设想,不但设想研究了这个问题,并且还得出证明了如下两个完全相反的结论: ......
为什么有现在的电子算盘
人们在远古时候,就用石子来计数。后来,生产力发展,又改用像筷子一样的小棒进行计数,叫做“筹算”。经过长时间的使用,大家都觉得用算筹摆来摆去进行计算确实不方便,于是把算筹改为用“珠盘”进行计算,就是把珠子放入盘内表示要相加的数,然后取出盘子里的珠子表示要减去的数字。用珠盘计数,珠子特别容易滚动,后来我国人民发明了珠算。我们使用算......
为什么卡拉OK比赛算分时要去掉最高分和最低分
在卡拉OK比赛中,评委们所亮出的分数,按评分规则都是要去掉一个最高分与一个最低分,之后取到的分数的平均值来作为参赛者的最后得分。不知道你想过没有,为何要去掉最高分与最低分呢? 例如一个同学唱完之后,六个评委中的评分是9.00、9.50、9.55、9.60、9.75、9.90(10分为满分)。再去掉最高分9.90与最低......
为什么有时我们只求近似值
假如有人问你:“今年几岁了?”你会回答:“我15岁了。”这个回答是正确的,但15只是你年龄的近似值,它并不十分精确。如果你的朋友也是15岁,要比较你们两个年龄的大小,就必须知道你们生在哪一月,也就是,你必须说出自己的年龄是14岁零几个月才好比较。但它依然是个近似值。如果你们两人同时生在10月份,那么,必须更准确地知道你们的生日......
为什么用一副三角板能画出24个角
每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......
为什么有无限大与无限小
人们通常碰到的数,不管是实数或是复数,都有确定的量值,就说是有限的。这充分反映了我们一般碰到的事物都是有限的,总能用这些数来计量。 我们在长期的不断认识过程中,又开始产生两个新的概念。最早,人们把整个宇宙说成只是地球,但航海学的测量却又测得地球半径大约为6370公里,它对人们来说,是一个十分大的数。16世纪,哥白尼的......
为什么汽油桶、热水瓶是圆柱形的
汽油桶、热水瓶等,都是用来装液体的容器。不知平时你注意过没有,装液体的容器,大都是圆柱形的。这是否有数学方面的道理呢?有的。 我们生产一件容器,都希望可以用最省的材料,来装一定体积的液体。或者说,用同样的材料,做成的容器的容积最大。 在平面几何里,我们学过计算圆面积以及一些正多边形的面积或周长的方法。例如:......
为什么有近似值
有的时候可能有人将问你:“你们年级有多少位同学呀?”你并不知道确切的数字,可你知道你班上有35位同学,共有4个班,因此你会说:“大概140名吧!”这时你所给出的数字便是近似值,由于你不知到底有多少位同学,所以就用近似值取代了准确值;并且你的分析也十分正确,年级中总共有143位同学,你所给出的近似值与准确值是十分接近的。近似值是......
为什么一个人能解决狼、羊、白菜过河的问题
题目是这样的:有位带着一只狼、一只羊、一棵白菜来到河边(我们假使狼是不吃人)的人。河边刚好有一条空着的小船,过河时,船很小仅能允许主人带一样东西,若带两样东西上船,船便会沉下去。另一方面,若没人照管,狼会吃掉羊,羊又将啃白菜,因此,狼和羊,羊和白菜在主人不在的情况下,是不可以放在一块的。问主人应该采取什么样的过河方案,才可以把......