数学
为什么在数学里要讲一一对应
我们讲求“一一对应”是数学上运用的最基本的关系。数字的来源相当早,有人类的出现,就有了数的使用。但是由于原始人类应用知识是极少的,且落后的,他们起初只知道“1”与“2”等数,后来,随着工具的大为改进,原始人捕获的猎物多得无法计清,他们为了计数,后来他们用结绳计数的方法来表示今天有多少猎物,这就是“一一对应”的雏形。 ......
为什么蜂窝都是六角形的
若你仔细地观察过蜜蜂的蜂房,你便会由衷地发出惊叹来,它的结构可真是大自然中的奇迹啊。 自正面看上去,蜂房的蜂窝全是由很多大小一样的六角形组成的,并且排列得十分整齐;自侧面看,蜂房由很多六棱柱紧密地排列在一起而构成的;若你再认真地观察这些六棱柱的底面,你会更加惊讶,它们已不再是六角形的,它不是平的,也不是圆的,却是尖的......
为什么用一副三角板能画出24个角
每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......
为什么偶数与整数同样多
当看到这则题目,你可能会不假思索地说:当然是整数比偶数多,部分怎么会比全体多呢!偶数是指能被2所整除的整数,它仅是整数集合中的一部分,另外除了偶数之外,整数还包括奇数。照这样看上去,偶数的确应该没有整数多。 但这个问题在实质上问的是偶数集合与整数集合之间的大小关系。集合在数学上所指的是一类事物的总称,若把所有的整数放......
为什么三角形内角之和总等于180度
平面几何告诉我们,“三角形的内角之和等于180度”。因为这是一条已经证明了的定理,所以对于“三角形内角之和会不会不等于180度”这样一个“怪”问题,很少会有人去设想了。 其实,它真的是个问题。早在100多年前,或是更早的时候,已有人开始设想,不但设想研究了这个问题,并且还得出证明了如下两个完全相反的结论: ......
为什么有无限大与无限小
人们通常碰到的数,不管是实数或是复数,都有确定的量值,就说是有限的。这充分反映了我们一般碰到的事物都是有限的,总能用这些数来计量。 我们在长期的不断认识过程中,又开始产生两个新的概念。最早,人们把整个宇宙说成只是地球,但航海学的测量却又测得地球半径大约为6370公里,它对人们来说,是一个十分大的数。16世纪,哥白尼的......
为什么用一根绳子能算出大树的直径
圆周率π是由中国古代伟大的数学家祖冲之最先计算出来的,要比西洋人早了达1000多年。有了圆周率,我们都知道它是圆的周长和直径的比值,就能借助π来求出周长或者半径的值了。可是在我国古代,π还未诞生的时候,人们是如何测量大树、池塘的直径的呢? 实际上,在更早的时候,勤奋智能的劳动人民便已经了解“径一周三”的道理来了。上句......
为什么有数学黑洞“西西费斯串”
传说在古希腊神话中,科林斯国王西西费斯被罚将一块巨石一直推到一座山上,但是不管他如何努力,这块巨石总是在到达山顶之前就滚下来,于是他只好再推,并且永无休止。世界著名的西西费斯串就是依据这个故事一举得名的。 什么叫西西费斯串呢?它是随便一个数,如35962,数出这个数中的偶数个数以及奇数个数、及全部数字的个数,就能得到......
为什么采用公历年
去年是公元2000年,而2000年的二月共有29天。若你再翻翻前年的日历,便会发现1999年的二月只有28天,再看看1998年的日历,1998年的二月份同样是28天。我们便把二月份中只有28天的公历年叫平年,而把二月份有29天的公历年叫做闰年。2000年便是闰年。 为何要分平年与闰年呢? 天文学上将地球绕太......
为什么没有最小公约数和最大公倍数
在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......