数学

为什么说动物中也有数学家

你晓得吗?在自然界中,有很多奇妙的动物“数学家”。在黄金矩形(宽长之比为0.618的矩形)里靠着三边做成一个正方形,剩下的那部分则又是一个黄金矩形,可以依次再做成正方形。将这些正方形中心都按顺序联结,可得到一条“黄金螺线”。而海洋学家发现,在鹦鹉螺的身上,在一些动物角质体上,或有甲壳的软件动物身上,都曾发现有“黄金螺线”。 ......

继续阅读

为什么球面不能展成平面图形

现在学过数学的人们都知道这样一个原理:圆柱、圆锥、圆台的侧面面积,我们可以利用各图形在平面内的展开图面来求出面积。但是球面是不能展成一个平面图形,因此球的表面积公式也就没办法用这个方法求出。但是为什么球面不能展成一个平面图形呢? 我们可以把圆柱、圆锥、圆台的一个侧面看成由一条直线(或线段)运动生成的图形,于是只有球面......

继续阅读

为什么用一副三角板能画出24个角

每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......

继续阅读

为什么“和尚吃馒头问题”有别的解法

我国历史上著名的珠算大师、明朝数学家程大位曾写了一本影响十分大的书《算法统宗》。这本书后来一直被流传到日本、朝鲜、以及东南亚一带。在书中能看到他精心编写的大量歌谣体古算题,“和尚吃馒头问题”便是其中之一。这道题原文是:一百馒头一百僧,大僧三个便无争,小僧三人分一个,大小和尚各几个? 这是极其浅显易懂的七言诗,能像“唱......

继续阅读

为什么π值是永不循环的

有一个关于圆周率的歌谣,盛行于古代:“山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐而乐。” 圆周率是圆的周长与直径之比,表示的是一个常数,符号是希腊字母 π。人们为了计算圆周率,公元前便开始对它进行计算。魏晋时期刘徽曾于公元263年用割圆术的方法求到3.14,这被称为“徽率”。 在公元460年,祖......

继续阅读

为什么说0的意义不是没有

上学以后我们最先学习的是算术课,便认识了0这一数字,它可能是你所学过的最小的数字了。那么0是什么含义呢?若用手指数铅笔盒内铅笔的数目,1代表一支铅笔,则0便表示无铅笔,0的意思便是没有,若你学过减法,而10减10等于0,意思是说减没了,好象10个苹果让人吃掉了,最后一个不剩。看来0确实表示没有。 平常0是表示没有,可......

继续阅读

为什么没有最小公约数和最大公倍数

在数学里我们曾学过最大公约数以及最小公倍数。或许你会提出问题,为什么公约数要讲最大,但公倍数却又讲最小呢?是否有最小公约数和最大公倍数呢?假如有的话,为什么不讲呢? 我们首先从一个具体情况来看: 例如有正整数16和24,它们有很多公约数,就是:1、2、4、8,它们的最大公约数是8,最小公约数是1。 ......

继续阅读

为什么游泳圈也叫救生圈

只要游过泳的人便都有过使用游泳圈的记忆,若你套上五彩缤纷的游泳圈在水里游泳、嬉戏的时候,你是否想到过,游泳圈的浮力有多大呢,为何它能把一个人托在水面上呢?那么游泳圈的浮力是如何计算的呢?用数学知识我们应该知道,若把游泳圈充满气之后的体积,乘以水的密度,然后再减去游泳圈自身重量,得到的结果便是游泳圈所有的浮力。 水的密......

继续阅读

为什么1+1可以等于1

我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......

继续阅读

为什么有时我们只求近似值

假如有人问你:“今年几岁了?”你会回答:“我15岁了。”这个回答是正确的,但15只是你年龄的近似值,它并不十分精确。如果你的朋友也是15岁,要比较你们两个年龄的大小,就必须知道你们生在哪一月,也就是,你必须说出自己的年龄是14岁零几个月才好比较。但它依然是个近似值。如果你们两人同时生在10月份,那么,必须更准确地知道你们的生日......

继续阅读