数学

为什么有哥德巴赫猜想

无论检验多大的数都可以发现,大于4的偶数一定可以写成两个奇素数之和,而大于7的奇数部可以写成三个奇数素数之和。 6=3+3,8=5+3 10=5+5,… 100=97+3,102=97+5… 9=3+3+3,11=5+3+3… 99=89+7+3,101=89+7+5,… ......

继续阅读

为什么有鸡兔同笼问题

鸡兔一笼问题是在我国古代算书《孙子算经》里的一个著名的数学问题。它的内容为: 在同一只笼子里,关着鸡与兔子。数一下,总有头35只,脚94只。请问:笼里有多少只鸡?多少只兔子? 利用现在列方程来解应用题的方法,求解这个问题十分容易。设里面鸡有x只,兔子有y只,那么由题意,有: x+y=35 ......

继续阅读

为什么要“先乘除,后加减”

为了防止四则混合运算时相互发生混淆,使计算得到一个已经确定的结果。人们先后结合生活和实际生产的各个需要,在四则混合运算中明确规定:要“先乘除,后加减”。为什么科学家会如此规定呢?因为这样规定是有一定道理的。它的理由如下: 1.这样规定运算顺序,更加符合生活实际需要。请看下面例子。例1:王大妈到布店买了3米红布,每米红......

继续阅读

为什么有近似值

有的时候可能有人将问你:“你们年级有多少位同学呀?”你并不知道确切的数字,可你知道你班上有35位同学,共有4个班,因此你会说:“大概140名吧!”这时你所给出的数字便是近似值,由于你不知到底有多少位同学,所以就用近似值取代了准确值;并且你的分析也十分正确,年级中总共有143位同学,你所给出的近似值与准确值是十分接近的。近似值是......

继续阅读

为什么三角形内角之和总等于180度

平面几何告诉我们,“三角形的内角之和等于180度”。因为这是一条已经证明了的定理,所以对于“三角形内角之和会不会不等于180度”这样一个“怪”问题,很少会有人去设想了。 其实,它真的是个问题。早在100多年前,或是更早的时候,已有人开始设想,不但设想研究了这个问题,并且还得出证明了如下两个完全相反的结论: ......

继续阅读

为什么采用公历年

去年是公元2000年,而2000年的二月共有29天。若你再翻翻前年的日历,便会发现1999年的二月只有28天,再看看1998年的日历,1998年的二月份同样是28天。我们便把二月份中只有28天的公历年叫平年,而把二月份有29天的公历年叫做闰年。2000年便是闰年。 为何要分平年与闰年呢? 天文学上将地球绕太......

继续阅读

为什么放大镜不能放大角

放大镜是在我们生活之中经常用的东西,特别是老爷爷、老奶奶在读书看报时更是离不了的必需物品。它可以把书本上的字放大了,让花了眼睛的老年人可以看得清、认得准。放大镜能把所有东西放大到几倍、十几倍、几十倍,若你觉得还不够大,还有放得更大的“放大镜”——显微镜呢,它可以放大至成百上千,甚至到百万倍,就连人眼看不见的细胞在显微镜下面都可......

继续阅读

为什么能快速画出五角星

我们介绍三种用直尺与圆规很快画出五角星的近似方法。像这样,你以后在彩纸上再画五角星的时候,可以方便多了。 方法一:口诀“城外道儿弯,城门五面开”,首先在纸上用圆规画个圆,然后画出圆的两条相互垂直的直径AC与BD;之后分别用C、D作圆心,用直径BD的半径作弧,两弧交在E点。则OE便近似等于圆的内接正五边形之边长。自A点......

继续阅读

为什么用一根绳子能算出大树的直径

圆周率π是由中国古代伟大的数学家祖冲之最先计算出来的,要比西洋人早了达1000多年。有了圆周率,我们都知道它是圆的周长和直径的比值,就能借助π来求出周长或者半径的值了。可是在我国古代,π还未诞生的时候,人们是如何测量大树、池塘的直径的呢? 实际上,在更早的时候,勤奋智能的劳动人民便已经了解“径一周三”的道理来了。上句......

继续阅读

为什么在罗马数字中没有“0”

世界上每一个国家的文字都是不相同的,可是它们却有一种相同的文字,不需要经过翻译,每个人都会看得懂,这就是阿拉伯数字。0、1、2……9等,这样写起来既简单方便,又容易看懂,所以各个国家先后都采用它来计数。“0”是一个奇特的阿拉伯数字,它是在1、2、3、4、5、6、7、8、9、0这10个数字中诞生得最晚的一个。世界上各国早期使用过......

继续阅读