数学

为什么1+1可以等于1

我们初学算术时,就已知道1+1=2了。这是确定无疑的。假如有人做加法而1+1的答数不是2,那就要得0分。但是,当我们学到了二进制制的计数法后,就知道在二进制制里1+1=10而不是1+1=2了。由于在二进制制里,根本就没有2这个数字。 现在这里又写了这样一个等式1+1=1。到底是什么道理呢?这叫做逻辑代数中的加法。 ......

继续阅读

为什么采用公历年

去年是公元2000年,而2000年的二月共有29天。若你再翻翻前年的日历,便会发现1999年的二月只有28天,再看看1998年的日历,1998年的二月份同样是28天。我们便把二月份中只有28天的公历年叫平年,而把二月份有29天的公历年叫做闰年。2000年便是闰年。 为何要分平年与闰年呢? 天文学上将地球绕太......

继续阅读

为什么有哥德巴赫猜想

无论检验多大的数都可以发现,大于4的偶数一定可以写成两个奇素数之和,而大于7的奇数部可以写成三个奇数素数之和。 6=3+3,8=5+3 10=5+5,… 100=97+3,102=97+5… 9=3+3+3,11=5+3+3… 99=89+7+3,101=89+7+5,… ......

继续阅读

为什么铁拉闸一推就会收拢

居住在城市里的小朋友,在上学或者回家时,假如沿马路留心观察一下,你一定可以发现,有些商店或建筑物的铁拉闸,尽管很重,但是开关起来却十分轻便。 为什么一扇巨大的铁拉闸,只要一推,它就被合拢了,但是拉伸开来,却又是那样地牢固呢? 假如你仔细地观察这些铁拉闸的个别构造,那就可以找到正确的回答。因为它们是由一个个的......

继续阅读

为什么要“先乘除,后加减”

为了防止四则混合运算时相互发生混淆,使计算得到一个已经确定的结果。人们先后结合生活和实际生产的各个需要,在四则混合运算中明确规定:要“先乘除,后加减”。为什么科学家会如此规定呢?因为这样规定是有一定道理的。它的理由如下: 1.这样规定运算顺序,更加符合生活实际需要。请看下面例子。例1:王大妈到布店买了3米红布,每米红......

继续阅读

为什么三角形内角之和总等于180度

平面几何告诉我们,“三角形的内角之和等于180度”。因为这是一条已经证明了的定理,所以对于“三角形内角之和会不会不等于180度”这样一个“怪”问题,很少会有人去设想了。 其实,它真的是个问题。早在100多年前,或是更早的时候,已有人开始设想,不但设想研究了这个问题,并且还得出证明了如下两个完全相反的结论: ......

继续阅读

为什么田忌赛马能得胜

齐王和大将军田忌商量赛马。他们约好:双方各自出上、中、下三个等级的马各1匹。一次举行三场比赛,输的每输一场便要付给对方1000两黄金。因为齐王的马要比田忌同一等级的马匹都要稍胜一筹,但在每场比赛中,双方都采用同等级的马加以对抗,后来齐王连胜3场,获得了3000两黄金。 没有多久,齐王再次邀请田忌来参加赛马。田忌感到十......

继续阅读

为什么有鸡兔同笼问题

鸡兔一笼问题是在我国古代算书《孙子算经》里的一个著名的数学问题。它的内容为: 在同一只笼子里,关着鸡与兔子。数一下,总有头35只,脚94只。请问:笼里有多少只鸡?多少只兔子? 利用现在列方程来解应用题的方法,求解这个问题十分容易。设里面鸡有x只,兔子有y只,那么由题意,有: x+y=35 ......

继续阅读

为什么用一副三角板能画出24个角

每副三角板内有二个三角板,一个上面的角度为30°、60°、90°,另一个上面的角度为45°、45°、90°。这样一来,每副三角板上只有30°、60°、45°、90°这四种角,如此,请你讲讲,有这四种角能够画出多少个角来呢?注意,这里讲的角是指知道确切角度数的,而不是指用三角板随便画出来的角。 上面的问题看上去十分简单......

继续阅读

为什么算筹是人类最早的计算工具

算筹是我国古代的劳动人民最先靠实践创造和广泛流传使用的简单计算工具之一。 算筹是如何产生的呢?《后汉书》上曾经有关于算筹的记载:“隶首则乱,陈子筹昏。”“乱”和“昏”的古语含义是用来形容禽兽不计其数,这足以表明远古时代人们随着畜牧业生产的不断发展,人们发现用手指头和结绳已不能满足计算猎物的需要了,于是人们就开始从那时......

继续阅读